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Topological definitions

K is always a compact Hausdorff space.

P(K) is the space of all probability regular Borel measures,
endowed with the weak∗ topology.
For a Boolean algebra A, P(A) denotes the space of all probability
finitely additive measures with the topology of pointwise
convergence.

Tightness of a topological space

A space K has countable tightness if for every A ⊆ K and x ∈ A
there is a countable B ⊆ A such that x ∈ B.

For example, every metric (or in general Fréchet-Urysohn) space
has countable tightness.

[0, ω1] and 2ω1 do not have countable tightness.
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Maharam type of a measure

Definition

Let µ ∈ P(K). We say that µ has a countable (Maharam) type
if there exists a countable family C of Borel subsets of K which is
△-dense,

ie. for every B ∈ Borel(K) and ε > 0 there exists C ∈ C
such that µ(B △ C) < ε.

Equivalently, the pseudo-metric space (Borel(K), ρµ) is separable,
where ρµ(A,B) ∶= µ(A△B) for every A,B ∈ Borel(K).

Equivalently, µ has a countable type if L1(µ) is separable.
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Important examples

The Lebesgue measure on R has countable type.

The product measure on 2ω has it as well.

The product measure λ on 2ω1 has uncountable type:

cξ ∶= {x ∈ 2ω1 ∶ x(ξ) = 0} for ξ < ω1

λ(cξ △ cη) = 12 whenever ξ ≠ η
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Motivational result

Fremlin ’97

Assume MA(ω1) + ¬CH. Let A be a Boolean algebra. Let there
exist µ ∈ P(A) with uncountable type.

Then P(Stone(A)) maps
continuously onto [0,1]ω1 , and hence P(Stone(A)) has
uncountable tightness.
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The main question, the main result, the main problem

in ZFC

Is it true that countable tightness of P(K) implies that every
measure µ ∈ P(K) is of countable type?

Plebanek and S.

If P(K ×K) has countable tightness, then every measure µ ∈ P(K)
is of countable type.

Pol’s open question from 80-ties

If P(K) has countable tightness, does P(K ×K) have it also?
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Proof – Step 1

Assume µ ∈ P(K) is of uncountable type.

Wlog µ is homogeneous
of type ω1.

Let C ⊆ Borel(K) be countable. Then there exists B ∈ Borel(K)
such that:

µ(B) = 12 ,
B is µ-independent of every C ∈ C, i.e. µ(B ∩ C) = 12µ(C).

Proof
By the Maharam Theorem Borel(K)/µ = 0 ≅ϕ Borel (2ω1)/λ = 0.

Let D● = ϕ [C●]. For every D● ∈ D● there exists D ′ ∈ D● and
ID′ ∈ [ω1]ω such that D ′ depends only on ID′ . Let ξ > sup⋃D′ ID′ .

Now take B ∈ Borel(K) such that B● = ϕ−1(c●ξ ). ∎
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Proof – Step 2

Using Step 1 define inductively a family ⟨Bξ ∶ ξ < ω1⟩ of Borel
subsets of K st.:

µ(Bξ) = 12 ,
Bξ is µ-independent of Cξ ∶= ⟨Bη ∶ η < ξ⟩.

Let R denote the algebra on K ×K generated by B ×B ′ where
B,B ′ ∈ Borel(K).

For every ξ < ω1 there exists νξ ∈ P(R) st.:

νξ has marginal distribution (µ,µ),

νξ(A ×A) = (µ⊗ µ)(A ×A) for every A ∈ Cξ,
νξ(Bη ×Bη) = 12 for every η ≥ ξ.

Every such νξ can be extended to νξ ∈ P(K ×K).
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Every such νξ can be extended to νξ ∈ P(K ×K).
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Proof – Step 2, cont.

Proof
Fix ξ < ω1.

Take A1, . . . ,An ∈ Cξ and Bη1 , . . . ,Bηm for some ξ ≤ η1 < . . . < ηm.
A0 ∶= alg({A1, . . . ,Am}), A1 ∶= alg(A0 ∪ {Bη1}).
Let ν0 ∶= µ⊗ µ∣A0×A0 . We will extend ν0 to ν1 ∈ P(A1 ×A1):

Let T1, . . . ,Tk be all the atoms of A0. Put for all i , j ≤ k :

ν1((Ti ×Tj) ∩ (Bη1 ×Bη1)) = 12ν0(Ti ×Tj)
ν1((Ti ×Tj) ∩ (Bc

η1 ×Bc
η1)) =

1
2ν0(Ti ×Tj)

ν1((Ti ×Tj) ∩ (Bc
η1 ×Bη1)) = 0

ν1((Ti ×Tj) ∩ (Bη1 ×Bc
η1)) = 0

Let A2 ∶= alg(A1 ∪ {Bη2}), extend ν1 to ν2 ∈ P(A2 ×A2) and so
on... to νm ∈ P(Am ×Am). ∎
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Proof – Step 3

If ν ∈ ⋂
ξ<ω1

{νη ∶ η ≥ ξ}, then ν ∉ {νη ∶ η ∈ I} for every I ∈ [ω1]ω.

The Proof just relies on some computations exploiting regularity
of µ. ∎

This all gives a contradiction and the end of the proof.
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The end

Thank you for your attention.
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