On tightness in the space of measures on Boolean algebras and compact spaces

Damian Sobota
Wrocław University of Technology
Winter School 2014, Hejnice
Joint work with Grzegorz Plebanek

Topological definitions

K is always a compact Hausdorff space.

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures,

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.
For a Boolean algebra $\mathcal{A}, P(\mathcal{A})$ denotes the space of all probability finitely additive measures

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.
For a Boolean algebra $\mathcal{A}, P(\mathcal{A})$ denotes the space of all probability finitely additive measures with the topology of pointwise convergence.

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.
For a Boolean algebra $\mathcal{A}, P(\mathcal{A})$ denotes the space of all probability finitely additive measures with the topology of pointwise convergence.

Tightness of a topological space

A space K has countable tightness if for every $A \subseteq K$ and $x \in \bar{A}$ there is a countable $B \subseteq A$ such that $x \in \bar{B}$.

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.
For a Boolean algebra $\mathcal{A}, P(\mathcal{A})$ denotes the space of all probability finitely additive measures with the topology of pointwise convergence.

Tightness of a topological space

A space K has countable tightness if for every $A \subseteq K$ and $x \in \bar{A}$ there is a countable $B \subseteq A$ such that $x \in \bar{B}$.

For example, every metric (or in general Fréchet-Urysohn) space has countable tightness.

Topological definitions

K is always a compact Hausdorff space.
$P(K)$ is the space of all probability regular Borel measures, endowed with the weak* topology.
For a Boolean algebra $\mathcal{A}, P(\mathcal{A})$ denotes the space of all probability finitely additive measures with the topology of pointwise convergence.

Tightness of a topological space

A space K has countable tightness if for every $A \subseteq K$ and $x \in \bar{A}$ there is a countable $B \subseteq A$ such that $x \in \bar{B}$.

For example, every metric (or in general Fréchet-Urysohn) space has countable tightness.
$\left[0, \omega_{1}\right]$ and $2^{\omega_{1}}$ do not have countable tightness.

Maharam type of a measure

Definition

Let $\mu \in P(K)$. We say that μ has a countable (Maharam) type if there exists a countable family \mathcal{C} of Borel subsets of K which is \triangle-dense,

Maharam type of a measure

Definition

Let $\mu \in P(K)$. We say that μ has a countable (Maharam) type if there exists a countable family \mathcal{C} of Borel subsets of K which is \triangle-dense, ie. for every $B \in \operatorname{Borel}(K)$ and $\varepsilon>0$ there exists $C \in \mathcal{C}$ such that $\mu(B \triangle C)<\varepsilon$.

Maharam type of a measure

Definition

Let $\mu \in P(K)$. We say that μ has a countable (Maharam) type if there exists a countable family \mathcal{C} of Borel subsets of K which is \triangle-dense, ie. for every $B \in \operatorname{Borel}(K)$ and $\varepsilon>0$ there exists $C \in \mathcal{C}$ such that $\mu(B \triangle C)<\varepsilon$.

Equivalently, the pseudo-metric space $\left(\operatorname{Borel}(K), \rho_{\mu}\right)$ is separable, where $\rho_{\mu}(A, B):=\mu(A \triangle B)$ for every $A, B \in \operatorname{Borel}(K)$.

Maharam type of a measure

Definition

Let $\mu \in P(K)$. We say that μ has a countable (Maharam) type if there exists a countable family \mathcal{C} of Borel subsets of K which is \triangle-dense, ie. for every $B \in \operatorname{Borel}(K)$ and $\varepsilon>0$ there exists $C \in \mathcal{C}$ such that $\mu(B \triangle C)<\varepsilon$.

Equivalently, the pseudo-metric space $\left(\operatorname{Borel}(K), \rho_{\mu}\right)$ is separable, where $\rho_{\mu}(A, B):=\mu(A \triangle B)$ for every $A, B \in \operatorname{Borel}(K)$.

Equivalently, μ has a countable type if $L_{1}(\mu)$ is separable.

Important examples

- The Lebesgue measure on \mathbb{R} has countable type.

Important examples

- The Lebesgue measure on \mathbb{R} has countable type.
- The product measure on 2^{ω} has it as well.

Important examples

- The Lebesgue measure on \mathbb{R} has countable type.
- The product measure on 2^{ω} has it as well.
- The product measure λ on $2^{\omega_{1}}$ has uncountable type:

Important examples

- The Lebesgue measure on \mathbb{R} has countable type.
- The product measure on 2^{ω} has it as well.
- The product measure λ on $2^{\omega_{1}}$ has uncountable type:

$$
c_{\xi}:=\left\{x \in 2^{\omega_{1}}: x(\xi)=0\right\} \text { for } \xi<\omega_{1}
$$

Important examples

- The Lebesgue measure on \mathbb{R} has countable type.
- The product measure on 2^{ω} has it as well.
- The product measure λ on $2^{\omega_{1}}$ has uncountable type:

$$
\begin{aligned}
& c_{\xi}:=\left\{x \in 2^{\omega_{1}}: x(\xi)=0\right\} \text { for } \xi<\omega_{1} \\
& \lambda\left(c_{\xi} \triangle c_{\eta}\right)=\frac{1}{2} \text { whenever } \xi \neq \eta
\end{aligned}
$$

Motivational result

Fremlin '97

Assume $\mathrm{MA}\left(\omega_{1}\right)+\neg \mathrm{CH}$. Let \mathcal{A} be a Boolean algebra. Let there exist $\mu \in P(\mathcal{A})$ with uncountable type.

Motivational result

Fremlin '97

Assume $\mathrm{MA}\left(\omega_{1}\right)+\neg \mathrm{CH}$. Let \mathcal{A} be a Boolean algebra. Let there exist $\mu \in P(\mathcal{A})$ with uncountable type. Then $P(\operatorname{Stone}(\mathcal{A}))$ maps continuously onto $[0,1]^{\omega_{1}}$,

Motivational result

Fremlin '97

Assume $\mathrm{MA}\left(\omega_{1}\right)+\neg \mathrm{CH}$. Let \mathcal{A} be a Boolean algebra. Let there exist $\mu \in P(\mathcal{A})$ with uncountable type. Then $P(\operatorname{Stone}(\mathcal{A}))$ maps continuously onto $[0,1]^{\omega_{1}}$, and hence $P(\operatorname{Stone}(A))$ has uncountable tightness.

The main question, the main result, the main problem

in ZFC
Is it true that countable tightness of $P(K)$ implies that every measure $\mu \in P(K)$ is of countable type?

The main question, the main result, the main problem

in ZFC

Is it true that countable tightness of $P(K)$ implies that every measure $\mu \in P(K)$ is of countable type?

Plebanek and S .

If $P(K \times K)$ has countable tightness, then every measure $\mu \in P(K)$ is of countable type.

The main question, the main result, the main problem

in ZFC

Is it true that countable tightness of $P(K)$ implies that every measure $\mu \in P(K)$ is of countable type?

Plebanek and S.

If $P(K \times K)$ has countable tightness, then every measure $\mu \in P(K)$ is of countable type.

Pol's open question from 80-ties
If $P(K)$ has countable tightness, does $P(K \times K)$ have it also?

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$,

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.
Let $\mathcal{D}^{\bullet}=\varphi\left[\mathcal{C}^{\bullet}\right]$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.
Let $\mathcal{D}^{\bullet}=\varphi\left[\mathcal{C}^{\bullet}\right]$. For every $D^{\bullet} \in \mathcal{D}^{\bullet}$ there exists $D^{\prime} \in D^{\bullet}$ and $I_{D^{\prime}} \in\left[\omega_{1}\right]^{\omega}$ such that D^{\prime} depends only on $I_{D^{\prime}}$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.
Let $\mathcal{D}^{\bullet}=\varphi\left[\mathcal{C}^{\bullet}\right]$. For every $D^{\bullet} \in \mathcal{D}^{\bullet}$ there exists $D^{\prime} \in D^{\bullet}$ and $I_{D^{\prime}} \in\left[\omega_{1}\right]^{\omega}$ such that D^{\prime} depends only on $I_{D^{\prime}}$. Let $\xi>\sup \cup_{D^{\prime}} I_{D^{\prime}}$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.
Let $\mathcal{D}^{\bullet}=\varphi\left[\mathcal{C}^{\bullet}\right]$. For every $D^{\bullet} \in \mathcal{D}^{\bullet}$ there exists $D^{\prime} \in D^{\bullet}$ and $I_{D^{\prime}} \in\left[\omega_{1}\right]^{\omega}$ such that D^{\prime} depends only on $I_{D^{\prime}}$. Let $\xi>\sup \cup_{D^{\prime}} I_{D^{\prime}}$.

Now take $B \in \operatorname{Borel}(K)$ such that $B^{\bullet}=\varphi^{-1}\left(c_{\xi}^{\bullet}\right)$.

Proof - Step 1

Assume $\mu \in P(K)$ is of uncountable type. Wlog μ is homogeneous of type ω_{1}.

Let $\mathcal{C} \subseteq \operatorname{Borel}(K)$ be countable. Then there exists $B \in \operatorname{Borel}(K)$ such that:

- $\mu(B)=\frac{1}{2}$,
- B is μ-independent of every $C \in \mathcal{C}$, i.e. $\mu(B \cap C)=\frac{1}{2} \mu(C)$.

Proof
By the Maharam Theorem Borel $(K) / \mu=0 \cong{ }_{\varphi} \operatorname{Borel}\left(2^{\omega_{1}}\right) / \lambda=0$.
Let $\mathcal{D}^{\bullet}=\varphi\left[\mathcal{C}^{\bullet}\right]$. For every $D^{\bullet} \in \mathcal{D}^{\bullet}$ there exists $D^{\prime} \in D^{\bullet}$ and $I_{D^{\prime}} \in\left[\omega_{1}\right]^{\omega}$ such that D^{\prime} depends only on $I_{D^{\prime}}$. Let $\xi>\sup \cup_{D^{\prime}} I_{D^{\prime}}$.

Now take $B \in \operatorname{Borel}(K)$ such that $B^{\bullet}=\varphi^{-1}\left(c_{\xi}^{\bullet}\right)$.

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

For every $\xi<\omega_{1}$ there exists $\nu_{\xi} \in P(\mathcal{R})$ st.:

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

For every $\xi<\omega_{1}$ there exists $\nu_{\xi} \in P(\mathcal{R})$ st.:

- ν_{ξ} has marginal distribution (μ, μ),

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

For every $\xi<\omega_{1}$ there exists $\nu_{\xi} \in P(\mathcal{R})$ st.:

- ν_{ξ} has marginal distribution (μ, μ),
- $\nu_{\xi}(A \times A)=(\mu \otimes \mu)(A \times A)$ for every $A \in \mathcal{C}_{\xi}$,

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

For every $\xi<\omega_{1}$ there exists $\nu_{\xi} \in P(\mathcal{R})$ st.:

- ν_{ξ} has marginal distribution (μ, μ),
- $\nu_{\xi}(A \times A)=(\mu \otimes \mu)(A \times A)$ for every $A \in \mathcal{C}_{\xi}$,
- $\nu_{\xi}\left(B_{\eta} \times B_{\eta}\right)=\frac{1}{2}$ for every $\eta \geq \xi$.

Proof - Step 2

Using Step 1 define inductively a family $\left\langle B_{\xi}: \xi<\omega_{1}\right\rangle$ of Borel subsets of K st.:

- $\mu\left(B_{\xi}\right)=\frac{1}{2}$,
- B_{ξ} is μ-independent of $\mathcal{C}_{\xi}:=\left\langle B_{\eta}: \eta<\xi\right\rangle$.

Let \mathcal{R} denote the algebra on $K \times K$ generated by $B \times B^{\prime}$ where $B, B^{\prime} \in \operatorname{Borel}(K)$.

For every $\xi<\omega_{1}$ there exists $\nu_{\xi} \in P(\mathcal{R})$ st.:

- ν_{ξ} has marginal distribution (μ, μ),
- $\nu_{\xi}(A \times A)=(\mu \otimes \mu)(A \times A)$ for every $A \in \mathcal{C}_{\xi}$,
- $\nu_{\xi}\left(B_{\eta} \times B_{\eta}\right)=\frac{1}{2}$ for every $\eta \geq \xi$.

Every such ν_{ξ} can be extended to $\overline{\nu_{\xi}} \in P(K \times K)$.

Proof - Step 2, cont.

Proof
Fix $\xi<\omega_{1}$.

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$.

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right)$,

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$.

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$: $\nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right)$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right)
\end{aligned}
$$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0
\end{aligned}
$$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0 \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}^{c}\right)\right)=0
\end{aligned}
$$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0 \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}^{c}\right)\right)=0
\end{aligned}
$$

Let $\mathcal{A}_{2}:=\operatorname{alg}\left(\mathcal{A}_{1} \cup\left\{B_{\eta_{2}}\right\}\right)$,

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0 \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}^{c}\right)\right)=0
\end{aligned}
$$

Let $\mathcal{A}_{2}:=\operatorname{alg}\left(\mathcal{A}_{1} \cup\left\{B_{\eta_{2}}\right\}\right)$, extend ν_{1} to $\nu_{2} \in P\left(\mathcal{A}_{2} \times \mathcal{A}_{2}\right)$

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0 \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}^{c}\right)\right)=0
\end{aligned}
$$

Let $\mathcal{A}_{2}:=\operatorname{alg}\left(\mathcal{A}_{1} \cup\left\{B_{\eta_{2}}\right\}\right)$, extend ν_{1} to $\nu_{2} \in P\left(\mathcal{A}_{2} \times \mathcal{A}_{2}\right)$ and so on... to $\nu_{m} \in P\left(\mathcal{A}_{m} \times \mathcal{A}_{m}\right)$.

Proof - Step 2, cont.

Proof

Fix $\xi<\omega_{1}$.
Take $A_{1}, \ldots, A_{n} \in \mathcal{C}_{\xi}$ and $B_{\eta_{1}}, \ldots, B_{\eta_{m}}$ for some $\xi \leq \eta_{1}<\ldots<\eta_{m}$. $\mathcal{A}_{0}:=\operatorname{alg}\left(\left\{A_{1}, \ldots, A_{m}\right\}\right), \mathcal{A}_{1}:=\operatorname{alg}\left(\mathcal{A}_{0} \cup\left\{B_{\eta_{1}}\right\}\right)$.
Let $\nu_{0}:=\left.\mu \otimes \mu\right|_{\mathcal{A}_{0} \times \mathcal{A}_{0}}$. We will extend ν_{0} to $\nu_{1} \in P\left(\mathcal{A}_{1} \times \mathcal{A}_{1}\right)$:
Let T_{1}, \ldots, T_{k} be all the atoms of \mathcal{A}_{0}. Put for all $i, j \leq k$:

$$
\begin{aligned}
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}^{c}\right)\right)=\frac{1}{2} \nu_{0}\left(T_{i} \times T_{j}\right) \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}}^{c} \times B_{\eta_{1}}\right)\right)=0 \\
& \nu_{1}\left(\left(T_{i} \times T_{j}\right) \cap\left(B_{\eta_{1}} \times B_{\eta_{1}}^{c}\right)\right)=0
\end{aligned}
$$

Let $\mathcal{A}_{2}:=\operatorname{alg}\left(\mathcal{A}_{1} \cup\left\{B_{\eta_{2}}\right\}\right)$, extend ν_{1} to $\nu_{2} \in P\left(\mathcal{A}_{2} \times \mathcal{A}_{2}\right)$ and so on... to $\nu_{m} \in P\left(\mathcal{A}_{m} \times \mathcal{A}_{m}\right)$.

Proof - Step 3

If $\nu \in \bigcap_{\xi<\omega_{1}} \overline{\left\{\overline{\nu_{\eta}}: \eta \geq \xi\right\}}$, then $\nu \notin \overline{\left\{\overline{\nu_{\eta}}: \eta \in I\right\}}$ for every $I \in\left[\omega_{1}\right]^{\omega}$.

Proof - Step 3

If $\nu \in \bigcap_{\xi<\omega_{1}} \overline{\left\{\overline{\nu_{\eta}}: \eta \geq \xi\right\}}$, then $\nu \notin \overline{\left\{\overline{\nu_{\eta}}: \eta \in I\right\}}$ for every $I \in\left[\omega_{1}\right]^{\omega}$.
The Proof just relies on some computations exploiting regularity of μ.

Proof - Step 3

If $\nu \in \bigcap_{\xi<\omega_{1}} \overline{\left\{\overline{\nu_{\eta}}: \eta \geq \xi\right\}}$, then $\nu \notin \overline{\left\{\overline{\nu_{\eta}}: \eta \in I\right\}}$ for every $I \in\left[\omega_{1}\right]^{\omega}$.
The Proof just relies on some computations exploiting regularity of μ.

This all gives a contradiction and the end of the proof.

The end

Thank you for your attention.

